Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 269: 116309, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38471357

RESUMEN

The colchicine binding site on tubulin has been widely acknowledged as an attractive target for anticancer drug exploitation. Here, we reported the structural optimization of the lead compound 4, which was proved in our previous work as a colchicine binding site inhibitor (CBSI). Based on docking researches for the active binding conformation of compound 4, a series of novel 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d][1,2,3]triazole derivatives (9a-9x) were developed by replacing a CH group in the 1H-benzo[d]imidazole skeleton of compound 4 with a nitrogen atom as a hydrogen bond acceptor. Among them, compound 9a showed the strongest antiproliferative activity with IC50 values ranging from 14 to 45 nM against three human cancer cell lines (MCF-7, SGC-7901 and A549), lower than that of compound 4. Mechanistic studies indicated that compound 9a could inhibit tubulin polymerization, destroy the microtubule skeleton, block the cell cycle in G2/M phase, induce cancer cell apoptosis, prevent cancer cell migration and colony formation. Moreover, compound 9a significantly inhibited tumor growth in vivo without observable toxicity in the mice 4T1 xenograft tumor model. In conclusion, this report shows a successful case of the structure-based design approach of a potent tubulin polymerization inhibitor for cancer treatment.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Animales , Humanos , Ratones , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Colchicina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Polimerizacion , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
2.
Cells ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38391924

RESUMEN

Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Atrios Cardíacos/patología , Insuficiencia Cardíaca/patología , Biomarcadores
3.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15665-15679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37669204

RESUMEN

End-to-end scene text spotting has made significant progress due to its intrinsic synergy between text detection and recognition. Previous methods commonly regard manual annotations such as horizontal rectangles, rotated rectangles, quadrangles, and polygons as a prerequisite, which are much more expensive than using single-point. Our new framework, SPTS v2, allows us to train high-performing text-spotting models using a single-point annotation. SPTS v2 reserves the advantage of the auto-regressive Transformer with an Instance Assignment Decoder (IAD) through sequentially predicting the center points of all text instances inside the same predicting sequence, while with a Parallel Recognition Decoder (PRD) for text recognition in parallel, which significantly reduces the requirement of the length of the sequence. These two decoders share the same parameters and are interactively connected with a simple but effective information transmission process to pass the gradient and information. Comprehensive experiments on various existing benchmark datasets demonstrate the SPTS v2 can outperform previous state-of-the-art single-point text spotters with fewer parameters while achieving 19× faster inference speed. Within the context of our SPTS v2 framework, our experiments suggest a potential preference for single-point representation in scene text spotting when compared to other representations. Such an attempt provides a significant opportunity for scene text spotting applications beyond the realms of existing paradigms.

4.
Biochem Pharmacol ; 213: 115632, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37263300

RESUMEN

BACKGROUND: Sepsis is a systemic inflammatory disease caused by multiple pathogens, with the most commonly affected organ being the lung. 3-Hydroxybutyrate plays a protective role in inflammatory diseases through autophagy promotion; however, the exact mechanism remains unexplored. METHOD: Our study used the MIMIC-III database to construct a cohort of ICU sepsis patients and figure out the correlation between the level of ketone bodies and clinical prognosis in septic patients. In vivo and in vitro models of sepsis were used to reveal the role and mechanism of 3-hydroxybutyrate in sepsis-associated acute lung injury (sepsis-associated ALI). RESULT: Herein, we observed a strong correlation between the levels of ketone bodies and clinical prognosis in patients with sepsis identified using the MIMIC- III database. In addition, exogenous 3-hydroxybutyrate supplementation improved the survival rate of CLP-induced sepsis in mice by promoting autophagy. Furthermore, 3-hydroxybutyrate treatment protected against sepsis-induced lung damage. We explored the mechanism underlying these effects. The results indicated that 3-hydroxybutyrate upregulates autophagy levels by promoting the transfer of transcription factor EB (TFEB) to the macrophage nucleus in a G-protein-coupled receptor 109 alpha (GPR109α) dependent manner, upregulating the transcriptional level of ultraviolet radiation resistant associated gene (UVRAG) and increasing the formation of autophagic lysosomes. CONCLUSION: 3-Hydroxybutyrate can serve as a beneficial therapy for sepsis-associated ALI through the upregulation of autophagy. These results may provide a basis for the development of promising therapeutic strategies for sepsis-associated ALI.


Asunto(s)
Ácido 3-Hidroxibutírico , Lesión Pulmonar Aguda , Sepsis , Animales , Ratones , Ácido 3-Hidroxibutírico/uso terapéutico , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Autofagia , Pulmón , Macrófagos , Sepsis/complicaciones , Rayos Ultravioleta
5.
J Surg Res ; 276: 379-393, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35447391

RESUMEN

INTRODUCTION: Our previous study confirmed that polydatin (PD) can alleviate sepsis-induced multiorgan dysfunction (in the vascular endothelium, kidney, and small intestine) by activating Sirt1 and that PD protects against traumatic brain injury in rats via increased Sirt1 and inhibition of the p38-mediated mitogen-activated protein kinase (MAPK) pathway. We aim to investigate whether PD may also attenuate sepsis-associated encephalopathy (SAE). METHODS: In this study, we constructed an SAE mouse model by cecal ligation and puncture (CLP) and measured Sirt1 protein activity, p38 phosphorylation, brain tissue pathological damage, pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), mitochondrial function (mitochondrial membrane potential, ATP content, and reactive oxygen species), neurological function, and animal survival time. Sirt1 selective inhibitor Ex527 and p38 inhibitor SB203580 were used to explore the possible mechanism of PD in SAE. RESULTS: We confirmed that PD inhibits neuroinflammation evidenced by reduced proinflammatory cytokines. In addition, PD protects mitochondria as demonstrated by restored mitochondrial membrane potential and adenosine triphosphate (ATP) content, and decreased reactive oxygen species (ROS) level. As we expected, p38 inhibition reduces neuroinflammation and mitochondrial damage. In contrast, Sirt1 inhibition aggravates cerebral cortex mitochondrial damage and neuroinflammation and promotes phosphorylation of p38. Mechanistically, PD treatment suppressed p38 phosphorylation and consequently reduced the neuroinflammatory response, and these effects were blocked by the Sirt selective inhibitor Ex527. CONCLUSIONS: This study, to the best of our knowledge, is the first to demonstrate that PD alleviates SAE, at least partially, by upregulating Sir1-mediated neuroinflammation inhibition and mitochondrial function protection.


Asunto(s)
Glucósidos , Encefalopatía Asociada a la Sepsis , Sepsis , Estilbenos , Adenosina Trifosfato/metabolismo , Animales , Citocinas/metabolismo , Glucósidos/farmacología , Ratones , Fosforilación , Especies Reactivas de Oxígeno , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/complicaciones , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Sirtuina 1/metabolismo , Estilbenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Sci Adv ; 7(49): eabk0176, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860541

RESUMEN

Numerous high-performance steels with various compositions and mechanical properties were developed to enable a safe and light-weight automotive body-in-white (BIW). However, this multisteel scheme creates substantial challenges, including the resistance spot welding of dissimilar steels, processing optimization, and recycling. Here, we propose a revolutionary unified steel (UniSteel) concept, i.e., using a single chemistry to produce multiple steel grades for the entire BIW. The tensile strengths of various UniSteel grades are ranging from 600 to 1680 MPa, encompassing the strengths of typical commercial counterparts while exhibiting competent ductility. The prototype parts made of UniSteel press-hardened steel (PHS) grade demonstrate superior side-intrusion resistance over the commercial PHS, and the satisfactory weldability is verified. The UniSteel reduces the resistivity difference within the sheet stack-ups, allowing the simplification of welding processes. The UniSteel concept could potentially revolutionize the manufacturing of BIW for the global automotive industry and contribute to carbon neutrality.

7.
Eur J Med Chem ; 226: 113826, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571171

RESUMEN

A series of new 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors targeting the colchicine-binding site were designed to restrict bioactive configuration of (Z,E)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities. Among them, 2a exhibited the most potent activities against three cancer cell lines with IC50 values in the range of 0.037-0.20 µM. Further mechanism studies revealed that 2a inhibited tubulin polymerization, disrupted cell microtubule networks, arrested the cell cycle at G2/M phase, induced apoptosis and hindered cancer cell migration. Moreover, 2a displayed significant in vivo antitumor efficacy in 4T1-xenograft mice model with tumor growth inhibition rate of 52% at the dose of 2.5 mg/kg. Colchicine competition assay and the docking model of 2a in complex with tubulin showed that 2a acted at the colchicine-binding site.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Imidazoles/síntesis química , Imidazoles/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
8.
Bioorg Chem ; 115: 105220, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352709

RESUMEN

Two series of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors were designed to restrict bioactive configuration of (E,Z)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, SGC-7901 and A549). Among them, 6d exhibited the most potent antiproliferative activity against the MCF-7 with IC50 value of 0.047 µM. Moreover, 6d significantly inhibited tubulin polymerization, disrupted microtubule networks, arrested cell cycle at G2/M phase, induced apoptosis and hindered cancer cell migration. Colchicine competition assay and molecular docking studies suggested that 6d could interact with tubulin by binding to the colchicine site.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Pirroles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Pirroles/química , Pirroles/metabolismo , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
9.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28397364

RESUMEN

Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κL ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb0.97 Eu0.03 Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces. This study reveals that dense lattice dislocations (≈4 × 1012 cm-2 ) are particularly effective at reducing κL . When the dislocation concentration is maximized, one of the lowest κL values reported for PbTe is achieved. Furthermore, due to the band convergence of the alloyed 3% mol. EuTe the electronic performance is enhanced, and a high thermoelectric figure of merit, zT, of ≈2.2 is achieved. This work not only demonstrates the effectiveness of dense lattice dislocations as a means of lowering κL , but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...